

Robotics 3 – Portfolio

Robotics 3

Portfolio Task 1

1Group Members

1Main Task

1Specification of Task

2Specification of Sub-Tasks

3Proposed Test Procedure

4Allocation of tasks

4Design Drawings

7Flow Chart

9Software Source Code

13Discussion of Testing

3
13Conclusion

Group Members

Group name: Group E

Andrew Seaford
UB No. 02005195

Ian Aubrey

UB No. 02002362

Jonathan Rogers
UB No. 02000233

Nick Hardman
UB No. 03014084

Main Task

The task is to design and build an autonomous robot that can follow the inside wall of an arena until it reaches a white brick which denotes the finishing position.

Specification of Task

The task can be broken down into the following sub tasks.

Creating the robot – This stage will require careful assessment of all requirements, a design which incorporates these and assembly using Lego Technic.
Programming the obstacle avoidance – The robot will have to use sensors attached to the front of the robot to avoid obstacles. This could be implemented using IR sensors or switches.

Programming the wall following – The robot will have to use sensors attached to the robot to detect the distance from the wall. This could be implemented using IR sensors or switches.
Programming the sensor to detect the white brick – The robot will need to detect the white brick. This could be implemented using IR sensors or LDR.

Specification of Sub-Tasks

Creating the Robot

This sub-task has many elements too it, these elements are listed below with their specifications.

Wall following arm

· Must detect when robot is close to wall and when it is not

· Must give a binary output as regards the above point

· Must be structurally sound enough to withstand hitting the wall with as much force as the robot can produce, repeatedly, without coming loose or changing its functionality.

· Must not impede the movement of the robot or have the potential to become caught on any element of the environment.

Bump sensors

· Must detect when the robot reaches an obstacle and give a useful output, preferably binary.
· Must be capable of withstanding multiple collisions with immovable objects.
· Must adsorb the shock of a collision to protect the robot.
Chassis

· Must be a platform to which further ‘modules’ can be added such as wall following arm.

· Must contain ALL elements required to fulfil ANY task not just this one.

· Must be extremely sound of structure and be able to withstand the rigours of use without losing any structural integrity.

· Must be simple to modify and adapt to any future task

White brick detector

· Must detect when the robot is close to the white brick

· Must ONLY detect the white brick!

· Must give a variable output so we can alter sensitivity depending on light conditions and brightness of brick.

Programming the obstacle avoidance
To achieve obstacle avoidance the robot must perform to the following specification:

· Must be able to detect obstacles

· Must be clearly manoeuvring around objects

· Upon contact robot must run correct routine

Programming the wall following
To prove capable of wall following the robot must:

· Be able to detect the wall

· Be able to move towards the wall when necessary

· Be able to respond to the wall in an intelligent manor

Programming the sensor to detect the white brick
The robot must conform to the following specifications:

· Stop upon locating the white brick

· Distinguish between ambient light fluctuations and the white brick

Proposed Test Procedure

Both the physical robot and the software will need rigorous testing. The physical robot must be constructed sufficiently to withstand whatever situation it will be faced with. In this case the conditions will not be too extreme and so as long as the robot is constructed sufficiently well to manoeuvre around the course, it should be ample.

The software will need, in this case, to be uploaded to the physical robot to be tested. If the robot was to be undergoing more dangerous tasks then an emulator or a simulated virtual environment may be used. The software will need to be tested rigorously to check that the robot can deal with all eventualities. Our software is unlikely to conform to this strict standard, but should be more than capable of carrying out the tasks set.

The overall objective of the robot is to follow the wall. This will mean that it will need to be able to detect the wall, both to the side and in front, and then be able to move in parallel until the robot discovers the white brick. Before finding the white brick the robot will be required to turn around corners.

In order to test the robot we will need to test each aspect of the code separately. We will do this by triggering each input sensor individually and check that we get the desired output.

This first round of testing should show that all the code functions work individually. We will then need to test the neural network section of code. This will be done by triggering the sensors and watching the LCD screen to check that the program is calculating, and responding to, the correct input at the correct time.

The final test for the robot will be placing it in the arena to check that it can accomplish the task correctly.

Allocation of tasks

It is impossible for the entire group to work on the same task at the same time so we split the group in half. One half worked on the program and the other, on the robot. At all times we made sure that we knew what the other half of the group was doing. Then if there was a problem which could not be easily solved we swapped jobs. This enabled us to bring new ideas and a fresh perspective whenever our progress slowed.

Design Drawings

In this section our original design ideas will be accompanied by photographs of the finished product and an explanation of how / why it varies as well as an explanation of why we made certain decisions. Also proof that the product fits the specification will be provided in this section.

Chassis

[image: image1.emf]
The Chassis of our robot (see picture above) is very strong and well built (note the symmetry of the design). It has much potential and can / will be adapted to many different tasks. Unfortunately the photograph is stretched horizontally but it is still possible to see the strength inherent within the construction. Throughout our testing and general use the chassis never caused a problem. Although it took a long time and painstaking attention to detail to construct, we all feel it was worth the extra effort to fulfil each point of the specification so successfully.

Wall following arm
In previous projects we have been required to produce a wall following robot and have found a long arm with a free moving wheel to be the most effective method. So we re-used our previously proven method of wall following.

[image: image2.emf]
This photograph shows the finished wall following arm(s) we found that this approach was much more effective than one single arm covering the whole side as it was no possible to tell what angle the robot was at with respect to the wall. Each arm has its own switch which is connected to the handyboard and gives a binary output. This solution fulfils all the points given in the specification, building the wall following arm was one of those rare tasks where everything went as planned. The only modification we made to the original implementation is the blue elastic band which can be see at the centre of the photograph and is responsible for returning each arm to its original position and ensuring they do not ‘flap’ when the robot is in use.

Bump sensors

[image: image3.emf]
This photograph shows one bump sensor in operation, it functions in a manner similar to that of a car shock absorber. The black elastic band both returns the axle to its extended position and acts as a damper. The switch closes when the axle is depresses past half way past that pint the flexibility of the metal switch plate provides added shock absorption. Our original plan or the bump sensors was much simpler, we mounted the two switches on the front of the robot and used them as bump sensors. However we soon found this was not adequate and developed this solution by slowly modifying the original idea. These bump sensors represent the outcome of the constant tweaking and alterations made to the robot over time. Whilst this is not a valid method of design in a real world application, we have all gained valuable experience by making mistakes and allowing the robot to ‘evolve’ over time. If asked to design a similar product in the future we could draw on this experience and design the bump sensors knowing full well that we would not need to change them as this method works (as with the wall follower above)

White brick detector

[image: image4.emf]
The arrow in this picture is pointing to a small light sensor Light Dependant Resistor (this image is near life size) which we used to detect the white brick in this project. The light sensor fulfils all of the specification points, it is especially useful because the output rage is perfect for this application.

Flow Chart

[image: image5.png]Input Neuron without bias Input Neuron with bias

N\ N\ N/ A

P w n Tay CENTEN) ’I [ES
l/;]

—/ \ J /] J

a

flwp)

a

fowp +b)

We decided that the best way to implement the code for the robot was to use a neural network. To do this we have used our knowledge from the biologically inspired computing module.

The basic block diagram for a neural network is shown below.

The equation for a neural network is a = wp + b

Where

a = output

p = input

w = weight

b = bias

The equation allows the neural network to give different weights to the different sensors. Hence giving the sensors different priorities. This is important in our robot because the front sensors of the robot are more important than the wall following sensors.

The robot does not fully implement the neural network because the weighting and bias do not change as the program runs. The reason for this is that the robot could get into a situation, where the robot is not touching the wall. The robot will then keep updating the weights and bias. After a long enough time the weights would have changed some much that the robot would think that it is touching the wall.

Software Source Code

/*Group E*/

/*Andrew Seaford*/

/*Jonathan Rogers*/

/*Ian Aubrey*/

/*Nicholas Hardman*/

/*Wall following task*/

/*The program below is used to follow a wall and stop when it reaches*/

/*a white brick. The program has been implemented using a neural network*/

void main()

{

 int p[4]; /*Inputs for neural network*/

 int w[4]; /*weights for neural network*/

 int b[4]; /*bias for neural network*/

 int a[4]; /*input for neural network*/

 int rank=0;

 int i=0; /*temp variable used in loops*/

 w[0]=20; /*setting weights for sensors - front sensor left*/

 w[1]=20; /*setting weights for sensors - front sensor right*/

 w[2]=10; /*setting weights for sensors - wall sensor front*/

 w[3]=10; /*setting weights for sensors - wall sensor back*/

/*Wait for start button*/

printf("\nPress start");

while(!start_button()){}

while(1)

{

 p[0]=digital(7); /*read in value of sensor - front sensor left*/

 p[1]=digital(8); /*read in value of sensor - front sensor right*/

 p[2]=digital(9); /*read in value of sensor - wall sensor front*/

 p[3]=digital(10);/*read in value of sensor - wall sensor back*/

 /*Neural network calculation a=pw+b*/

 for(i=0;i<4;i++)

 {

 a[i]=p[i]*w[i]+b[i];

 }

 /*sort to find the most important*/

 if (a[0] > a[1])

 {

 rank=0;/*front left only pressed*/

 }

 else

 {

 rank = 1;/*front right only*/

 }

 if (a[rank] > a[2])

 {

 rank=rank;

 }

 else

 {

 rank = 2;/*wall front only*/

 }

 if (a[rank] > a[3])

 {

 rank=rank;

 }

 else

 {

 rank=3;/*Wall back*/

 }

 if (a[0] ==0 && a[1] ==0 && a[2] ==0 && a[3] ==0)

 {

 rank=9;/*needs input*/

 }

 if(a[0]==1 && a[1]==1)

 {

 rank=4;/*Both Front*/

 }

 if(a[2]==1 && a[3]==1)

 {

 rank=5;/*Both wall sensors*/

 }

 printf("\nrank = %d",rank);

 /*Take action according to rank number*/

 if(rank==4)

 {

 /*the both front sensor are most important*/

 turn();

 }

 if(rank==0)

 {

 /*the front left sensor is most important*/

 turn();

 }

 if(rank==1)

 {

 /*The front right sensor is most important*/

 turn();

 }

 if(rank==5)

 {

 fd(0);

 fd(1);

 msleep(50L);

 ao();

 }

 if(rank==2)

 {

 /*The wall front sensor is most important*/

 /*while(digital(10) !=1)*/

 {

 motor(0,-60);

 motor(1,-100);

 msleep(50L);

 ao();

 }

 printf("end of rank 2");

 msleep(50L);

 for (i=0;i<4;i++)

 {

 a[i]=0;

 p[i]=0;

 }

 }

 if(rank==3)

 {

 /*The wall back sensor is most important*/

 /*while(digital(9) !=1)*/

 {

 motor(0,60);

 motor(1,100);

 msleep(5L);

 ao();

 }

 printf("end of rank 3");

 msleep(50L);

 for (i=0;i<4;i++)

 {

 a[i]=0;

 p[i]=0;

 }

 }

 if(rank==9)

 {

 printf("\nNeed input");

 motor(0,70);

 motor(1,100);

 msleep(5L);

 fd(0);

 fd(1);

 msleep(20L);

 ao();

 }

 }

}

void turn()

{

 if (analog(6) < 70)

 {

 printf("\nfound brick");

 beep();

 beep();

 beep();

 beep();

 beep();

 ao();

 sleep(50.0);

 }

 /*motor zero left side*/

 /*motor one right side*/

 motor(0,-50);

 motor(1,-100);

 msleep(500L);

 motor(0,100);

 motor(1,-100);

 msleep(400L);

 ao();

 motor(0,60);

 motor(1,100);

 msleep(50L);

 ao();

}

Discussion of Testing

After creating the code we have tested the robot according to the testing plan set out previously. Most of the code worked first time, but we did encounter some problems with the ranking system. These were quickly resolved by just changing the ranking orders so that the robot reacted in the manner intended. We also encountered problems after the robot was slightly damaged. The motor wires had come unplugged, and were reattached in the wrong positions. This made the robot turn and move the wrong way, but we quickly realized the problem and were able to alter the motor wiring till it started working correctly again.

The robot has been programmed so that it starts with the wall sensors touching the wall. The robot is capable of finding a wall, but this takes a longer amount of time, and the robot appears lost during this time, however if left it will find the wall the carry on as expected.

After carrying out each of the tests we were able to make slight adjustments to variables within the code, however this was not always necessary and was only implemented out of a desire to achieve perfection.

Conclusion

In conclusion, this project was most successful. The code we implemented and the robot we designed both prevailed in testing and assessment. If we had more time we would probably have only spent it testing and tweaking the final design, its hard to see how any major alterations could have been made to better achieve the task.

Start

Read in values of sensors and store in array p

Calculate neural network�a = wp + b, store output in array a

Sort array a to find the highest, store value in rank

Implement rank

Rank =0; turn //front left sensor is most important

Rank =1; turn //front right sensor is most important

Rank =2; turn left //front wall sensors is not touching the wall

Rank =3; turn right //back wall sensors is not touching

Rank =4; turn //both front sensor are most important

Rank =5; forward //both wall sensors are most important

Rank =9; random movement //none of the sensors are touching

Page 1

_1146744879.psd

_1146746356.psd

_1146747237.psd

_1146742295.psd

